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We study the stationary, doubly periodic convective modes in a horizontal fluid
layer, in which the loss of stability is accompanied by bifurcation from the state
of rest, The fluid layer is heated from below,

The bifurcation equation is four-dimensional for almost every ratio of the wave
numbers, Using the fact that the problem is invariant with respect to the shears
in the horizontal plane, we succeed in reducing the dimensionality of the bifur-
cation equation. Study of the resulting two-dimensional system shows that the
state of rest gives rise to three, substantially different modes, One of these modes
represents 2 rectangular convection [1, 2] and the remaining two, a plane con-
vection, The assertions made in the present work are also valid in the case of
convection in a layer with two free boundartes,

When determining the secondary, doubly periodic convective modes, we usu-
ally make certain additional assumptions about their symmetry, This makes it
possible to reduce the problem to the case of a simple spectrum {1 — 3], How-
ever, the problem of determining all doubly periodic modes requires that the
complete multi-dimensional bifurcation equation be considered, Such a problem
is posed in e, g. [4].

The group theoretic properties of the problem are found helpful in investigating
the bifurcation equation. Thus in [5] it is shown that in certain cases (in particu~
lar in the case of a plane convection) the group theoretic considerations make it
possible to reduce the investigation of bifurcation in the presence of 2 multiple
specttum, to a one-dimensional bifurcation equation. In the case of rectangular
convection however, the method of [5] succeeds only in reducing the order of the
system of bifurcation equations to two,

The purpose of this paper is to study all possible stationary modes of doubly
periodic free convection in a layer, occurring when the Rayleigh number passes
through its minimum critical value,

1, Statement of the problem. Let us consider the convection in a fluid
layer bounded by two immovable horizontal planes z = h and z = — % maintained at
a constant temperature

. .
vAV——F)‘VP=(VV)V+BgTv AT =vGT, divv=0
T@yh=T, T@y—h=Ty V(y+h=0 4.9

Here z,y,z are rectangular Cartesian coordinates with the z -axis pointing vertically
downwards; p, v, and f are the constants characterizing the fluid, and g is accelera-
ticn due to gravity, The problem (1,1) has the following stationary solution correspond-
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ing to the state of rest
vo=0,To=Cz+ C1, po = pBe (€242 4+ Ciz+ Cy)

We seek another stationaty solution v/, p’and 7’ in the form
v . o , 2hvC
v’=vo+-27V, p'=pg-rwq, T w= Ty <4 — i

(R BegC (2h)‘) v
= v

We obtain the following system in the dimensionless variables (the notation of coordi-
nates is retained) for the perturbations:

AV — Vg = (V) V 4 17k, At=PVTT 41V, 1.2)

divV=0 t=VR P=v/y k=001
V=0, 1=0, z==j:1/2 . (13)

We shall be interested in those solutions of the problem (1.2),(1.3) which are2n / a-
periodic in z and 2x/ B-periodic in y. Let in addition assume that the layer, as a
whole, undergoes no displacement in the horizontal plane

Yg m/fB fy a2
Vadydz= | | Tydzds= (1.4)
—lg—n ;3 —ljy et |
Let us consider the following Hilbert spaces:
1) Space A which is the closure of smooth periodic vectors V defined in the
layer and satisfying the condition (1.4) in the mertric .

2B ¢
(Vh vi)H; =—4T{; § VJvde

Here Q denotes the parallelepiped [z| < x/a, |y| < x/B, 2] < e
2) Space H?which is the closure of a set of smooth periodic functions t defined
in the layer and vanishing at the layer boundary in the metric

af
(%1 Ta)gs = 757 § T1T2dQ

3) Subspace H,! of A? representing the closure on the norm of A of a set of
smooth solenoidal vectors V & A* vanishing at the layer boundary,

4) Space H = H' X H*.

5) Space H, = Ho' X H*.

In the following we shall denote the elements of # by ® = {V, v} = {Vx: Vi Va,
7}, VE L, 1€ A
Let [1 be the orthogonal projection operator from H into H, and let M be a set of

twice continuowsly differentiable vectors ® € H, satisfying the conditions (1,3), The
following operators act from M into H,:

AD = —TI1{AV, AT}, BO=-—TIl{tk V;}
K@, @] = — I {(V\¥) Vs, PV}, KO=K[Q Q] {1.9)
K° [‘Dl, 02] =K [011 @2] “+ K [oﬂv ml]
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In the new notation the system (1, 2) — (1. 4) assumes the form
A® = yBO + KO (1.6)

The operator B is symmetrical and A is positive definite, Equation (1,6) yields
©=9A4A7B® + AXKO = F O

The operator #, is completely continuous in the energetic space H, of the operator 4.
Let y = y, denote the point of bifurcation of Eq, (1,6), We consider, for small >0,

the following problem (4 — 7B)® = pBO + KO wn

The study of bifurcation is made more difficult here by the fact that the problem in
question has a great number of solutions, We shall indicate one of the reasons for this,
Let us determine, in the space A , the shear operator in z, ¥

LEﬂi_D= D, O1 (z,y,2) =Pz =5, y+ 1 2)

The operators 4, B and X are invariant with respect to the shears
Ly A= ALy,  LyB=Bly,  LyK[®, )= K (L, ®1, Ly, ®u]  (1.8)

We note that the operator L, is isometric
(L!ﬂ®l' LE“QQ)H = (¢1' %)H

Let @ be any solution of Eq, (1. 7). Then by virtue of the relations (1, 8) the vectors
L, ® will also be its solution for any §, n. Thus, in the present case the invariance of
the problem with respect to the horizontal shears defines, in many instances, the multi-
plicity of the branches,

Let us separate the set of all solutions of (1, 7) into classes, collecting in each class
solutions generated from each other by shears, This can be done as the shear transforma-
tion has an inverse, Each solution belongs to one and only one class, We shall cail a set
of solutions containing one element from each class a complete set, Our problem con-
sists of finding 2 complete set of small solutions of the problem (1.7).

2., The linearised problem. Let us consider the following linear problem:
A® = y,B® (2.1)
By definition (2, 1) is equivalent to the system

1
AY — Tq = 107k, Ve o Ar, {V.v}e M (2.2)
Eliminating vV and g, we obtain from (2,2)
a2 a2 dAT
As't‘==To=(-a—z.—,. +-3y7>r, 1=A-r_—=—a-z—=0, z==41/5 2.3)

Let H° and H.° denote the solution spaces of (2.1) and (2, 3), respectively, and consider
the vector {V, 1} = ® & #°. With 1 specified, V can be uniquely determined from

(2. 2), therefore ®=Nt, OB
By virtue of the last relation the spaces #° and H.° are isomcrphic, If {v;°}i" is a basis

in H.°, then {NT,°};™ is a basis in H°. Seeking the solution of the problem (2, 3) in the
form t = u (z)¢****™V) we arrive at the following equation:
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—Lu=M, u=Lu=Lu =0, z=+1, (2.4)
L=d/ds?— 03, )=, 62 =dt 4 Bims
As we know {1], the problem (2, 4) has simple eigenvalues, Let A, (8) be the first eigen-
value of the problem (2,4), We assume
M®) _ (B £
7e? -n}’m ot B(o’ 1(2.5)
The value y =y, represents the point of bifurcation of the problem (1.6) [1], (The
uniqueness of the extremum (2. 5) is not proved strictly, however numerous computations
indicate that this is, in fact, the case),
Let us consider the set E of all pairs (x, f) such that the relation
BB 4 Bim? = O, (2.6)
holds for one and only one pair (I, m) of natural numbers, For (x, f) & £ the space
H_° is four-dimensional, The following functions can be chosen as the basis functions:
= u (2) cos (alz + Pmy), T°® = u (z) cos (alz — Pmy)
T3° = u (2) sin (aiz + Bmy), T = u(z) sin (alz — Pmy) 2.7

We shall use the vectors @,° = Nx;°, i==1, ..., 4 as the basis in #°, By (1, 8) the space
H° is invariant under the transformations Lg, . If @° & H°,then L, @° & H° also,
As before, we divide A° into classes, collecting in each class all the vectors generated
from each other by shears in z, y. The following iemma establishes the one-to-one
correspondence between each such class belonging to &#°, and a unique vector of speci-
fic form belonging to the same class,

Lemma 1, For any nonzero vector ®° & H° we can find ¢ and 7 such, that

Ly, @° = "0 + 0,°Q,°, C°> 0 (2.8)
where C,;° are uniquely defined, (All lemmas are given without proof because of the

limit imposed on the length of this paper),
We shall note another property of (2,1) which will be found important, The inequality

(AD —~ 38D, D)y >0 (2.9)
holds for all ® & M and equality in (2. 9) is possible only when @ < g° (see e, g [3]).
3, Mirror reflections, Let us use the following notation:
Vo Vo Val G D = (V= G D, Vy B e )y V2 (B D)

We define the "mirror reflection™ operators §; and S, for the vectors V and & and
for the functions of T as follows:
SIV={=V,V,V =21y, 2), SV={V,, =V, V)2, ~v2)
Sit=T(—2z,¥,2), SHTt=1(z—y2), SO={(SV,S71)

By direct verification we can establish the following properties of the operators S§;:
SA=AS, SBmBS, SK{®, O)=K[SD,S5 O] (3.1)

The operators §; are isometric
(S D1, S Pojg = (D), Do)y 3.2)

We denote S = §15,. Let H® be a set of vectors ¢, Hy, S®,= @ ,and H* as a set
of vectors @, = H,, S®,= — @. By virtue of the reiation (3, 2), the above sets are
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orthogonal subspaces
8 pa (@1, D)y =0, Oy & H, O, € H? 3.3)

We note that out of the previously selected basis vectors,
®1°7 020 E HC’ (Dso» ®J° E H!

4, Complete set of solutions, We seek a solution of the problem (1, 7) in
the form
D=0+ @, P H, O L H° 4.1)
Let Q be the projector on the orthogonal compiement of the subspace H° and 4 —
YoB = D. The problem (1, 7) can be written in the following equivaient form

DOy = Q [uB (D° + By) 4+ K (D° + Dy)], @, | H° (4.2)
(LBD + KO, O°)y = 0. k=1, .. 4 4.3)
For given small u and @° Eq. (4.2) has a unique small solution @, = @, (u, O°).

Lemma 2, Foranysolution @& of the problem (4.1)—(4,3), £ and n can be found
such, that L, O & He.

This lemma follows from the previous remark, Lemma 1 and the relations (3.1)~(3, 3).
Lemma 2 enables us to reduce the problem of obtaining a complete set of small nonzero
soluttons of (1, 7) to that of finding a complete set of solutions belonging to H°.

In the following we shall find useful the relations obtained by integration by parts:

(K [@1, Opl, D)y = — (K [D1, Dy], )y 4y EM (4.4)
(K [oiv 0’]’ OI)H = 0 (4.5)
We note another important property of the problem (1. 7), namely that for p = 0 it
has no nonzero solutions [5].

Lemma 3, The vector X [®;°, ®,°] is orthogonal to the space H°,
Let @y be a solution of the following problem:

DO, =K[0,®°], ©; | H° (446)

The above problem has, by virtue of Lemma 3, a unique solution,
Theorem 1, Forall (, ) & E and the Prandtl numbers such that

I = (D®u, Ou)y — (DO, Py — (DD, 1z, + Du)g = 0 4.7y
nonzero solutions of the problem (1, 7) can be written, for small p, in the form
D= Z Q"Bk, g = Vll 4.8)
k=)

These solutions are either plane flows, or can be obtained by shears from a convective
flow with rectangular cell, symmetrical with respect to the XOZ and YOZ pianes,
Proof. By virtue of Lemmas 1 and 2, the vector ®° can be written in the form

D° = ;O;° + a®y°, a;» 0 (4.9)

Equation (4, 2) yields a unique expression far @y = @, (a1, a4, p). We seek @, in the
o

form of a series i s

o= Z °ijx°‘"°"=’“k- D5, L HS, o, EH (4.40)
i, §, k=0

where @9 == 0. Substituting (4.10) into the conditions (4, 3) we obtain the following
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system of bifurcation equations:
(LB® + KO, ) g = P (@, @, p) =0, k=12 (4.11)

The conditions of solvability for k = 3,4 are fulfilled automatically by virtue of the
relation (3, 3) together with the note which follows it, The number of different solutions
of (1, 7) belonging to H® is equal to the number of different solutions {a1 (), a; (1)} of
(4.11).

Let us establish some properties of the system (4. 11) following from the group proper~
ties of the initial problem, We set pB® + KO® = f (a1, @s) and note that

5,00 = D0, S;0° = O° (4.12)
From (4.12) it follows that S,f (a1, @) = f (&, @1). Further, taking into account the
fact that the operator S; is isometric, we have

(f (Gly (11), ®g°)‘H = (Sif (alv a'!)v Si ®2°)H= (f (a‘m a1)1 ml')a

Th
" Fy (1, @, @) = F1 (e, &1, @) (4.13)

we now set Lyjap nes.m = L1 and note that
L = — &°, Lid° =’ (4.14)
In analogy with the previous argument, (4, 14) yield
Fy (a1, @g, p) = F1(— a1, @y, 4)
F1 (a1, Ggy p) = — F1 (— a1, ag, ) (4.15)
Using (4. 13) and (4.15) we conclude that 71 contains only the odd powers of a1 and the
even powers of a,, by interchanging a; and @,, F, is obtained from Fy,
Thus system (4. 11) has the form
bpaa + 2101° + a1y + ... = 0 (4.186)
bucts + 6,eatta® + 12 + ... = 0
Let us now determine the coefficients &, a; and a. Substituting the expression (4.10)
into (4, 2) and taking into account Lemma 3 and (4, 6), we obtain
Do = Dozo = Qo = Dy = 0, k=1, 2, ... (4.17)
@0 = Pu, Dgyg =Ps, Pr1o = P13 + Oy (4.18)
The coefficients b, a; and as are expressed in terms of ®@;°, ®yg0, Pogo 20d Dy, Ta-
king into account the relations (4. 4),(4. 5) and (4.18), we obtain
b= (BO®, ™y (4.19)
a1 = (E(®g00, D1°), O1°)g = — (DD, Pu)g (4.20)
Let us consider the expression for a.
ay = (K°[O11y, ©3°] + K° [@ga0, ©1°), ®1%),p

We note that by virtue of the relations (4,12) and (4,18), S;®uo = M1y, The latter,
together with the identity (4.4) yields

(K [P0, D1 ®1)g = (K [Ono, O1%lg = 0
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after which, taking into account (4, 4), (4. 5) and (4, 18) we obtain
a3 = — (D), P12 + Pzy — (DO, D)y 4.21)
We shall show that 5 > 0. In accordance with the definition of the operator B , we

2
have —b = (I {7k, V)%, OO = 2 (V,.°, ) = = (AT2°, T1%) g, < O

Next we show that e1 << 0. From the relations (4, 20) and (4, 10) it follows that a; <X 0
and, that if a; = 0, then ©n & H°. The latter is however impossible, otherwise we would
have K ©,° = 0, and the problem (1.7) would have a nonzero solution ®:° for p = 0.

Let us now retwrn to the system (4.16). As the first equation contains the factor a1
and the second a,, the systemn has two obvious solutions

(-]
w=0, a?= D tnp" th=—=2_50
[ 12t @

a; =0, Agl = 2 th.k
: k==l
These solutions correspond to plane convective flows, Now assume that a;, 235 0, In
search of other admissible solutions we divide the equations of (4.16) by 1 and a, ,
respectively, The resulting system contdins only even powers of ai and «,

bp + a1® 4 at® + ... = 0 (4.22)

b + aa® + a10y* 4 ... = 0
Assume that the determinant

A o= i == (a1 - ag) (a1 — a1)

az a;

is nonzero, Then the system (4, 22) has a unique solution in < and A

o
a;® = == 2 gk}fk, g1—_————_{, >0
) a, —+— ag

(Below we shall show that a1+ @, <C 0.) In this case the corresponding t° have the form

T = + auu (3) [cos (alz <+ Bmy) + cos (alz — Pmy)]

It is obvious that all such solutions are obtained by shears from the "rectangular” con-

vection in which
t° = 2a; u (z) cos alz cos fmy

It remains to show that the condition (4. 7) implies that A == 0. First we shall show
that & + a, < 0. Taking into account the relations (4, 12), (3.4) and (3. 5) we obtain
from (4, 20) and (4. 21) the following new expressions for a1 and 4s

a1= — (DDyy, Dg)y, 6y = — (DOu1, D12+ Da)g — (D Dy, On)y (4.23)
Combining the expressions (4. 23), (4. 20) and (4, 21) we obtain
—2 (a1 + a3) = (D(@n + Du1), D1z 4 Du)g 4 (D (Pu+ Py), On + Pyu)g (4.24)

By virtue of the inequaiity (2.10) the expression (4. 21) is nonnegative and it can become
equal to zero only when @y -+ @, € H° and @12 + Pu & H*. This is however impos-
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sible, otherwise K (®1° + @,°) = 0 and the problem (1. 7) has a nonzero solution
D =0+ ®° with # =0. Thus A = 0if a1 — a, 5= 0 and this leads o the condi-
tion (4, 7). This completes the proof of Theorem 1,

§. Computation of I. We comsider the functional I on the set (a, B) € E.
Let us denote al = @, and fm = B1. By virtue of the relation (2, 7) we have

a1 + B2 = 6o (5.1)

The Prandtl number P appears linearly in the operator X. The functional / is of
course a quadratic trinomial in P. At the circle (5,1) we have

I (a1, P) = a(x1)P?+ b ()P + ¢ (a1) (5.2)

The coefficients of the wrinomial (5, 2) were computed for 8,2 = 9.7157 by the author,
The computations have shown that the trinomial has no positive roots no matter what
values are assumed by ai, and this implies that the theorem is applicable for any
(@, B) € E. We note that the quantity / also plays a part in investigating the stability
of the resulting secondary modes relative to the perturbations of the same periodicity .
Note, All previous arguments are extended to the case of convection in a layer
between two free surfaces, In this case the sign of the functional / can be determined
analytically, It can be shown that in this case

2] = — (D (D1 + Pn), P12+ Pu)g <0
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