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We study the stationary, doubly periodic convective modes in a horizontal fluid 
layer, in which the loss of s tabi l i~ is accompanied by bifurcation from the state 
of rest. The fluid layer is heated from below. 

The bifurcation equation is four-dimensional for almost every ratio of ~ e  wave 
numbers. Using the fact that the problem is invariant with respect to the shears 
in the horizontal plane, we succeed in reducing the dimensional/~ of the bifur- 
cation equation. Study of the r e s u l ~ g  t~o-dimensional system shows that the 
state of rest gives rise to three, substantiaUy different modes. One of these modes 
represents a rectangular convection [1, 2] and the remaining two, a plane con- 
vection. The asse~ions made in the present work are also valid in the case of 
convecUon in a layer with two free boundaries. 

When determining the secondary, doubly periodic convective modes, we usu- 
ally make certain additional assumptions about their symrnet~/. This makes it 
ixmible to reduce the problem to the case of a simple specs'urn [ I  - 3]. How- 
ever, the problem of determining all doubly periodic modes requires that the 
complete multi-dimensional bifurcation equation be considered. Such a problem 
is posed in e. g. [4]. 

The group theoretic properties of the problem are found helpful in investigating 
the bifl~cation equation. Thus in [6] it is shown that in certain cases (in particu- 
lar in the case of a plane convection) the group theo~t ic  considerations make it 
pmsible to reduce the investigation of b i f t~a t ion  in the presence of a multiple 
speclzum, to a one-~tmensional bifurcation equation. In the case of rectangular 
convection however, the method of [5] succeeds only in reducing the c~der of the 
system of bifurcation equations to two. 

The purpose of this paper is to study all possible stationary modes of doubly 
periodic free convection in a layer, occurring when the Ray le i~  number passes 
through its minimum critical value. 

1 .  S t a t e m e n t  o f  Zhe p r o b l e m .  Let us consider the convection in a fluid 
layer bounded by two immovable  horizontal planes z ---- h and z = - -  h maintained at 
a constant temperature 

1 
'~Av -- "~ ~p ----- (vT) v + [BgT, XAT == v~T, div v == 0 

T (z, y, h) I= TI, T (x, y, - -  h) = T.,., v (x, y, -~- h) == 0 (i .l) 

Here z, y, z are rectangular Cartesian coordinates with the z -axis pointing vertically 
downwards ; p, v, X and ~ are the constants characterizing the fluid, and g is accelera-  
tion due to gravity. The problem (1.1) has the following stationary solution correspond- 
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ing W the state of rest 

v o = O, To = Cz + Cl, Po •= P~g ( C=l/2 q" Clz "~" Ci) 

We seek another stationary solution ' ' ~., p and T' in the form 

v'  =Vo-~- '~"  V, p '  ==Po-~- ~ q, Y ' m  To -t- - ' ~  • 

We obtain the following ~/smrn in the dimensionless variables (the notation of coordi- 
nates is retained) fm the perturbations: 

div V =. 0, 7 =  V"R, P = ~ / Z ,  k = (0, 0, i) 

V = 0, x = 0, z = 5:~/2 (i.3) 

We shall be in~ere~md in those.solutiom of the problem ( I .  2), ( I .  3) which are 2n / ~- 
periodic in z and 2n / ~.periodlc in y.  Let in addition assume that the layer, as a 
whole, undergoes no displacement in the borizonml plane 

S S S I , , . , ,  
- - i l l  - - n  i '~ - - i i l  - - n  / a 

Let us eomtder i e  following H i l l  spaces: 
1) Space / / a  which is the olostre of smooth periodic vecton V defined in the 

layer and satisfying the condition ( 1 . 4 )  in the metric 

(%, WOw = ~  v ~ v ~  

Here o denore4the parallelepiped I z l ~  ~ / ~ ,  lyl  ~ ~ / ~ ,  I = l ~ i i - .  • 
2) Space / ~  which is the closure of a set of smooth periodic functions x defined 

in the layer and vanishing at the layer boundary in the metric 

(x~, ~l)n, = ~ "rt'rIdf~ 

3) Subspace Ho x of H a representing the closure on the ne~m of Ha of a set of 
smooth solenoidal vec•rs V E H x vanishing at the layer boundary. 

4) Space H = H  ~ x  Ha. 
5) Space H o =  H01 X Ha. 

In the following we shall denote the elements of H by ¢~ m {V, ~} = {Y=, Yv, Vz, 
z}, V ~ H a ,  ~ E H  ~. 

Let fl be the crthogonal projection operator from H into He and let M be a set of 
twice continuously dtfferentiable vectors ~D ~ H0 satisfying the conditiom ( 1 . 3 ) .  The 
following operawrs act from M Into H0: 

A ¢  = - -  n (~v ,  A~}, B ¢  = - -  n {xk, V:) 
K [O1, ¢~.~1 = __ H { (V~')  V., P V ~ - , } ,  K ~ = K [ ~ , ~ ]  ti.5) 

K* 1 ~ ,  ~ 1  = K I~)~, ~ 1  + K [¢~., ~ ]  
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In the new notation the system ( 1 . 2 ) -  (1 .4)  assumes the form 

A ~  = ,~BO + K O  (i .0)  

The operator B is symmetrical and A is l~0sitive definite. Equation (1.6) yields 

= . F A - t B .  + A - t K O  =2_ F,~(D 

The operator F v is completely  continuous in the energetic space H A of the operator A.  
Let "~ == ?0 .denote the point of  bifurcation of  Eq. (1.6) .  We consider, for small  ~ > 0, 

the following problem 
(.4 - -  ~0B)~) == p.B~ + K ~  (t.7) 

The study of  bifurcation is made mote difficult here by the fact that the problem in 
question has a great number of  solutions. We shall indicate one of the reasons for this. 
Let us determine,  in the space H ,  the shear operator in z, y 

L ¢ ~  = ah ,  ¢~ (=, u, *) - -  a)(x - ¢, v + ~, ~) 

The operators A,  B and K are invariant with respect to the shears 

L i s a  == AL,4s , L~sB ~,, BL~v t, I.X~K [ ~ ,  Oo.] • K [ L i t * , ,  L~sff,~] (t.8) 

We note that the operator Li~ is isometric 

(Lira)l. Lft~2)~z ~ (*~. ~ ) l z  

Let q) be any solution of  Eq. (1 .7 ) .  Then by virtue of the relat iom (1.8)  the vectors 
L¢~)  will also be its solution for any ~. ~l. Thus, in the present case the invariance o f  
the lxoblem with respect to the horizontal shears defines, in many instances, the mul t i -  
plicity of  the branches. 

Let m separate the set of  all solutions of  (1.7)  into classes, col lect ing in each class 
solutions generated from each other by shears. This can be done as the shear transforma- 
t ion has an inverse. Each solution belongs to one and only one class. We shall call  a set 
of solutions containing one e lement  from each class a complete  set. Our problem con-  
sists of  finding a complete  set of small  solutions of the problem (1.7) .  

g .  T h a  l t n e a t i | e d  p r o b l e n t .  Let  us consider the following linear problem:  

A *  ~ 7oB~ (2.i) 

By definition (2,1)  is equivalent to the system 

- -  ~Tq ----- ~oxk, Vz == + o  Ax, {V, x} ~ M (2.2) 
A 

AV 

Eliminating V and q, we obtain from (2. 2) 

A~¢ == T0~ ~ +  ~, ~ ----- Ax - ' ' ~ - - :  ~= 0, z=~:~ll~. (2.3) 

Let H ° and H~ ° denote the solution spaces o f ( 9 . 1 )  and (2. 3), respectively, and consider 
the vector {V, x} == • ~ H °. With x specified. V can be uniquely determined from 
(2.2) .  therefore 

By virtue of the last relation the spaces 2i r° and H.  ° are isomorphic. If  {*t°}P is a basis 
in H= °, then {N'ct°}~ n is a basis in H °. Seeking the solution of the problem (2.3)  in the 
form x == u (z)e t(alx+~mv) we arrive at the following equat ion:  



O o o u ~ e n c e  o£ d o u b l y  per£od.l.c convee¢%on £n a ~o~lgon~al l a y e r  ~ 6 ~  

-- LSu .- ~u, = = Lu = Lu' = O, = -= + s/I (2.4) 
L = # / d~ -- e,, ~ = 7o~ i, e' = #P + pm= 

As we know [I ] ,  the problem (2.4) has simple eigenvalues. Let ~ (8) be the first eiEen- 
value of the problem (2.4). We assume 

(e) ~ (~) 
T, ' - -  m m  e, ~s # 2 )  

The value 7 = 'Yo represents the point of bifusrmtion of the problem (1.6) [1]. (The 
uniqueness of the exU~murn (2. G) is not proved strictly, however numerous computatiom 
indicate that this is, in fact. the case). 

Let us comider the set E of all pairs (¢t, ~) such that the relation 

# ~  + pro: = eo s (2.6) 

holds for one and only one pair (l, m) of natutal numbers. For (~, ~) ~ E the space 
/~,° is four-dimemionaL The followin 8 functions can be chosen as the basis functions : 

• ,° = ,, (:) co* (~J., + ~mv), ~o .= ,, (,) cos (=t, -- ~mv) 

r= ° = u (s) sin (ctLz + ~mV), Tt ° = u(s) sin (aLz -- ~mV) (2.7) 

We shall use the vectors ¢>o = N~f*, ~ = t . . . . .  4, as the basis in / /~ .  By (1.8)  the space 
is invar iant under the transformatiom L ~ .  I f  ~0 ~ H °, then LS~)" ~ H ° also. 

As before, we divide/7 ° into classes, collecting in each class all the vectors generated 
from each other by shears in z, V. The following lemma establishes the one*to-one 
correspondence between each such class belonging to R*, and a unique vector of speci- 
fic form belonging to the same class. 

Le m m a 1 .  For any nonzero vector ~* ~ ~ we can find ~ and 11 such, that 

L~(IP = Cz*@~ ° + C2"q)2 °, Ct* ~ 0 (2.8) 

where Cl ° are uniquely deflned.(All lemmas are given without proof because of the 
limit imposed on the length of this paper). 

We shall note another property of (2.1) which will be found important. The inequality 

(A~  - -  ~ ,  ~ ) s  ~ 0 (2.9) 

holds for all ~ ~ M and equality in (2. 9) is possible only when ~ ~ H ~ (see e. ~. [3]). 

8. ML:~o: : e f l e c t i o n t .  Let us use the following notation: 

We define the "mirror reflection" operators ,y] and St for the vectors V and ~) and 
for the functions of • as follows : 

.%V = { - -  V=, V v, V,~ ( - -  z, V, z), ~ V  = (V=, - -  V~, V }  (z, - -  V, :) 

3~.  = *  (-- =, V, z), S~.  = .  (z, - -  V, z), S i ~  = (SiV, 3 j }  

By direct verification we can establish the following properties of the operators 5 6 

5~A = A.~i, S~B -- B.e+, $~K [q~, ~ ]  = E [3~q)x, Sie~ ] (3.t) 

The operators S, are isometric 
(Si~x, Si~:)s = (~)~, ~:)~r (3.2) 

We denote 3 = ~ lSv  Le t / / c  be a set of vectors ( I ) ]~ H0, 3( I ) ]= ~) ,and H '  as a set 
of vectors ~z ~ Ho, 8(I)o= - -  ~ .  By virtue of the retation (3.2), the above sets are 
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orthogonal subspaces 
(O1, O2)H =" 0, O1 ~ H c, • 2 ~ H s (3.3) 

We note that out of the previously selected basis vectors, 

O1%O2 ° E H  c, O8 °,O~ ° ~ H  s 

4 .  C o m p l e S e  met o f  m o l u t t o n m .  We scek a solution of the problem (1. 7) tn 
the form 

• = • ° "4- 0o, 0 ° ~ 2/°, 0o .1. H ° (4.1) 

Let Q be the projector on the orthogonal complement  of  the subtpace H °, and A - -  
~/oB = D. The problem (1.7)  can be written in the following equivalent form 

Do0 = Q I ~  (o ° + o0) + g (o ° + o0)1, o0 2. H ° (4.2) 

( ~ o  + g o ,  ok°)~ = o. k = i . . . . .  4 (4.3) 

For given small  g and 0 • ~q. (4. 2) has a unique small  solution 00 = q~0 (it, ~o). 
L e m m a  2. For any solution • of  the problem ( 4 . 1 ) - ( 4 . 3 ) ,  ~ and ~l can be found 

such, that L~ • E Hc. 
This lemma follows from the previous remark, Lemma I and the rela~om (3.1)-(3. 3). 

I~mma  2 enables us to reduce the problem of obtaining a complete  set of  small  nonzero 
solutions o f  (1 .7)  to that of  finding a complete  set of  solutions be lon~ng  to H ¢. 

In the following we shall find useful the relations obtained by integration by parts: 

(K [O1, O,], Os)~ = - -  (K [O1, Os], 02)/~, Ot ~ M (4.4) 

(K Io~, o,1,  o , ) ~  = 0 (4.5) 

We note another important property of the problem (1.7) ,  namely that for p = 0 it 
has no nonzero solutions [5]. 

[ . e m m a  3 .  The vector K [Oy °, O ,  °] is onhogonal  to the space H °. 
Let O]~ be a solution of  the following problem : 

DOj~ = K [ O / ,  O~°], Ois _k H ° (4.6) 

The above problem has. by ~r tue  of  Lemma 8, a unique solution. 
T h • o r • m 1 .  For all  (a, g) ~ E and the Prandtl numbers such that 

I = (DOn, Oxz) u - -  (DO,//, O=)/./ - -  (DO1,, 012, + O,1) s =/= 0 (4.7) 

nonzero solutions of  the problem (1.7)  can be written, for small  ~ ,  in the form 

k==l 

These solutlom are e l th~  plane flows, or can be obtained by shears from a convective 
flow with rectangular cell,  symmetr ica l  with respect to the XOZ and YOZ planes. 

P r o o f .  By virtue of  Lemmas I and 2, the vector 0 "  can be written in the form 

O0 = alO~ ° + o%O, °, af ~ 0 (4.9) 

Equation (4. 2) yields a unique exl:~ssion for Oo = • 0 (~,, a~, ~). We seek ~I, 0 in the 
form of a series 

0o = ~, O i j , ~ i ~  ~, O0~: _L H °, Oiy,~ ~ / : /o  (4.t0) 
i, ~, k=,.0 

where Ooeo == 0. Substituting (4.10)  into the conditions (4. 3) we obtain the following 
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system of bifurcation equations : 

(/~B* + KO, Ok') H ----- Fk (at, a,, g) = 0, k = i,2 (4.ti) 

The conditions of solvability for k = 3,4 are fulfilled automatically by virtue of the 
relation (3.3) together with the note which follows iL The number of different solutions 
of (I .  7) belonging to / ~  is equal to the number of different solutions {at (D), a~ (~) } of 

( 4 . ~ ) .  
Let us etmbUsh some properties of the system (4.11) following from the group proper- 

ties of  the initial p~b lem.  We set p B ~  + Kq~ = ~ (at, ~ )  and note that 

S ~ t o  = ~ o ,  ~ t ~ t  ° = 'O1 ° (4.t2) 

From (4.12) it follows that $tf (at, ~tt) = ] (a~, at). Further, taking into account the 
fact that the operator 8f is isometric, we have 

(f (at, ¢,), ~ , ' )~  = (~d (a~, ~ ) ,  S~ ¢~ ' )s  = (f (=~, at), ~x ' )s  

Thus (4.i3) 

w e  now set 

F: (~ ,  ~,, ~) = F~ (~ ,  ~1, ~) 

L=/~l,n/2,~, m ---- Lt and note that 

Lt ~" =ffi -- ~I°, Lt~to = ~2 ° (4.14) 

In analogy with the previous argument, (4.14) yield 

F~ (al, ~ ,  ~) = F~ (--  ~t, at,  ~) 

FI (al, at, F) = -- FI (-- al, ~, ~) (4.i5) 

Using (4.13) and (4.15) we conclude that Ft contains only the odd powen of =i and the 

even powers of ~ , b y  interchanging at and ~ ,  F, is obtained f~om F , ,  
Thus system (4.11) has the form 

b ~ l  + alal ~ "4- atalat  ~ + .-. = 0 (4.i6) 

b~,t. + atc~..a1~ + axa2 s + ... = 0 

Let us now determine the coefficients b, a~ and a.. Substituting the expression (4.10) 
into (4.2) and taking into account Lemma 3 and (4. 6), we obtain 

• loo = ~zo = ~oot = ~oo~ = 0, k = l, 2 . . . .  (4.i7) 

~=oo = q~n, ~os0 = ~ t t ,  ~lto = 01s + ~=1 (4.t8) 

The coefficients b, a~ and at are expressed in terms of ~)i °, Otoo, ~oto and ~no. T a -  
king into account the relatiom (4 .4) , (4 .5)  and (4.18). we obtain 

b = ( S ~  °, ~t°)S (4.i9) 

at = (K°[~,oo, ~ ° ] ,  q~°)z~ = - -  (DOn '  ~ ' ) H  (4.20) 

Let us comider the expression for at 

at = (K°ttVuo, ~ t  °] + K° [~oto, ~t°], ~ t ° ) , s  

We note that by virtue of the relations (4.12) and (4.18), Sign0 =ffi (~)ttg. T h e  L ~ . ~ r .  

wgether with the identity (4. 4) yields 

(K [O1~o, ~ ° ] ,  ~t°)u = (K [~lhto, O~°]s = 0 



1 ~2 {~ .K.Te~-.~r:Lgor ' lan~s 

after which, taking into account  (4.4),  (4. 5) and (4.18)  we obtain 

al = -- (D~), ~i, + ~I -- (De~1, ~n)i/ (4.21) 

We shah show that b > 0. In accordance with the definition of  the ovezator B , we 
have 2 

- -  b = (H {~*k, Vzz°}, e-°)H •ffi 2 (Vz:°, l~°)ffj ~, -~0 (A~z°' ~ l ' ) ~  ~ 0 

Next we show that al <~ 0. From the relations (4.20) and (4.10)  it follows that al ~ 0 
and, that if az =ffi 0, then e u  ~ H*. The latl~r is howeve~ impossible, otherwise we would 
have E e l  ° =ffi o, and the problem (1.7)  would have a nonzero solution e l  ° for ~ =1 o. 

Let us now return to the sTstem (4.16) .  As the first equation contains the factor ~1 
and the second 0~, the system has two obvious solutions 

~. = o, ~ = ~ ,  t ~ .  ~, t~ = - b__ > o 

e o  

Ctt = =  O, ~t22 ~ ~ tell k 

These solutions correspond to plane convect/ve flown Now assume that c~, ~ =~ 0. In 
search of other admissible solutiom we divide the equat~om of (4. 16) by ~a and ~ ,  
respect / re ly .  The resulting sysmm conti ins only even powers of ~ and % 

bp. + al~.= + a ~  ~ + ... ~ 0 (/1.22) 

b~ + ~ + m ~ :  + ... =ffi 0 

Assume r~at the determinan~ 

A == ala~ a~a~ = ( a l + a , ) ( a l - - a ~ . )  

is nonzero. Then the ~ysmm (4. 22) has a unique ~olution in ~ and ~ 

b 

(Below we shall show that a~ ~ a~ <~ 0.) In this case the corresponding ~ have the form 

It is obvious that all such solutions are obtained by shears from the "rectangular" con-  
vect ion in which 

~° =ffi 2c~I u (z) cos ~/= oos ~m~ 

It remains to show that the condition (4. 7) implies that A =4= 0. First we shah show 

that • + a~ <~ 0. Taking into account the relations (4. 12),(3.4) and (3.5) we obtain 

from (4. 20) and (4. 21) the following new expressions for al and as 

a ~ = -  ( D e . ,  era)H, a ~ - - - - -  ( D ~ ,  e l . . + e : x ) H -  (DO**, en ) / z  (4.23) 

Combining the expremious (4. 23). (4. 20) and (4. 21) we obtain 

--2 (a~ + a~) = (D(ex.~ + e ~ ) ,  e ] s  -~. e : ] )  H -~- (D ( e u  + era), ~ + e = )  B (4.24) 

By virtue of the inequaiity (2. I0)  the expression (4. 21) is nonnegatlve and it can become 
equal to zero only when e~: ~ e .  ~ / / *  and e =  ~ e ~  ~ H ' .  This is however impos- 
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sible, otherwise X (~)1 ° -4- ~o)  _-- 0 and the problem (1.7) has a nonzero solution 
¢ __ cV~-~ ~_ ~ o  with ~ =~ 0. Thus A ~= 0 if a~ --  ~ =~ 0 and this leads to the condi- 
tion (4. 7). This complems the proof of Theorem I .  

5. C o m p u t a t i o n  o f  / ' .  we comider the functional / on the set (~, ~) ~ E. 
Let us denote ~l := " i  and ~m = ~i. By vL, zue of the relation (2.7) we have 

~l ~ -{" ~I* ---- 8o 2 (5 .1)  

The Prandtl number P appears linearly in the operaux K. The functional I is of 
course a quadratic trinomial in P. At the circle (5.1) we have 

I (al, P) = a (al)P ~ -4- b (a*)P -{- c (a2) (5.2) 

The coefficients of the ~lnomial (5. 2) were computed for "8o 2 I= 9.7i57 by the author. 
The compumtiom have shown that the ~lnomial has no positive mo~ no mauer what 
values axe assumed by ¢**, and 12tis implies that the theorem is applicable for any 
(a, ~) ~ E. We nora that the quantity I also plays a part in inves t lga~g the subili~y 
of the result2ng secondary modes relatlve to the pertt~'batio~, of the same periodicity. 

N o t e .  All previous a~guments are extended to the case of convection in a layer 
between two ~ surfaces. In this case the sign of the functional I can be determined 
analytically. It can be shown that in r ~  case 

2 / =  - -  (D (®~ ÷ Cn), ¢ ~  -{- ¢ ~ ) s  '< O 
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